3.11.52 \(\int (d+e x) (c d^2+2 c d e x+c e^2 x^2)^{5/2} \, dx\) [1052]

Optimal. Leaf size=34 \[ \frac {\left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{7 c e} \]

[Out]

1/7*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(7/2)/c/e

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {643} \begin {gather*} \frac {\left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{7 c e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2),x]

[Out]

(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(7/2)/(7*c*e)

Rule 643

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*((a + b*x + c*x^2)^(p +
 1)/(b*(p + 1))), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2} \, dx &=\frac {\left (c d^2+2 c d e x+c e^2 x^2\right )^{7/2}}{7 c e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 23, normalized size = 0.68 \begin {gather*} \frac {\left (c (d+e x)^2\right )^{7/2}}{7 c e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2),x]

[Out]

(c*(d + e*x)^2)^(7/2)/(7*c*e)

________________________________________________________________________________________

Maple [A]
time = 0.60, size = 35, normalized size = 1.03

method result size
risch \(\frac {c^{2} \left (e x +d \right )^{6} \sqrt {\left (e x +d \right )^{2} c}}{7 e}\) \(27\)
default \(\frac {\left (e x +d \right )^{2} \left (x^{2} c \,e^{2}+2 c d e x +c \,d^{2}\right )^{\frac {5}{2}}}{7 e}\) \(35\)
gosper \(\frac {x \left (e^{6} x^{6}+7 d \,e^{5} x^{5}+21 d^{2} e^{4} x^{4}+35 d^{3} e^{3} x^{3}+35 d^{4} e^{2} x^{2}+21 d^{5} e x +7 d^{6}\right ) \left (x^{2} c \,e^{2}+2 c d e x +c \,d^{2}\right )^{\frac {5}{2}}}{7 \left (e x +d \right )^{5}}\) \(95\)
trager \(\frac {c^{2} x \left (e^{6} x^{6}+7 d \,e^{5} x^{5}+21 d^{2} e^{4} x^{4}+35 d^{3} e^{3} x^{3}+35 d^{4} e^{2} x^{2}+21 d^{5} e x +7 d^{6}\right ) \sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{7 e x +7 d}\) \(98\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/7*(e*x+d)^2*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)/e

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 29, normalized size = 0.85 \begin {gather*} \frac {{\left (c x^{2} e^{2} + 2 \, c d x e + c d^{2}\right )}^{\frac {7}{2}} e^{\left (-1\right )}}{7 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="maxima")

[Out]

1/7*(c*x^2*e^2 + 2*c*d*x*e + c*d^2)^(7/2)*e^(-1)/c

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 114 vs. \(2 (29) = 58\).
time = 2.51, size = 114, normalized size = 3.35 \begin {gather*} \frac {{\left (c^{2} x^{7} e^{6} + 7 \, c^{2} d x^{6} e^{5} + 21 \, c^{2} d^{2} x^{5} e^{4} + 35 \, c^{2} d^{3} x^{4} e^{3} + 35 \, c^{2} d^{4} x^{3} e^{2} + 21 \, c^{2} d^{5} x^{2} e + 7 \, c^{2} d^{6} x\right )} \sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}}}{7 \, {\left (x e + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="fricas")

[Out]

1/7*(c^2*x^7*e^6 + 7*c^2*d*x^6*e^5 + 21*c^2*d^2*x^5*e^4 + 35*c^2*d^3*x^4*e^3 + 35*c^2*d^4*x^3*e^2 + 21*c^2*d^5
*x^2*e + 7*c^2*d^6*x)*sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)/(x*e + d)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 287 vs. \(2 (29) = 58\).
time = 0.38, size = 287, normalized size = 8.44 \begin {gather*} \begin {cases} \frac {c^{2} d^{6} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7 e} + \frac {6 c^{2} d^{5} x \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} + \frac {15 c^{2} d^{4} e x^{2} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} + \frac {20 c^{2} d^{3} e^{2} x^{3} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} + \frac {15 c^{2} d^{2} e^{3} x^{4} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} + \frac {6 c^{2} d e^{4} x^{5} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} + \frac {c^{2} e^{5} x^{6} \sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{7} & \text {for}\: e \neq 0 \\d x \left (c d^{2}\right )^{\frac {5}{2}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*e**2*x**2+2*c*d*e*x+c*d**2)**(5/2),x)

[Out]

Piecewise((c**2*d**6*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/(7*e) + 6*c**2*d**5*x*sqrt(c*d**2 + 2*c*d*e*x + c*
e**2*x**2)/7 + 15*c**2*d**4*e*x**2*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/7 + 20*c**2*d**3*e**2*x**3*sqrt(c*d*
*2 + 2*c*d*e*x + c*e**2*x**2)/7 + 15*c**2*d**2*e**3*x**4*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/7 + 6*c**2*d*e
**4*x**5*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/7 + c**2*e**5*x**6*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/7, N
e(e, 0)), (d*x*(c*d**2)**(5/2), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 136 vs. \(2 (29) = 58\).
time = 1.67, size = 136, normalized size = 4.00 \begin {gather*} \frac {1}{7} \, {\left (c^{2} x^{7} e^{6} \mathrm {sgn}\left (x e + d\right ) + 7 \, c^{2} d x^{6} e^{5} \mathrm {sgn}\left (x e + d\right ) + 21 \, c^{2} d^{2} x^{5} e^{4} \mathrm {sgn}\left (x e + d\right ) + 35 \, c^{2} d^{3} x^{4} e^{3} \mathrm {sgn}\left (x e + d\right ) + 35 \, c^{2} d^{4} x^{3} e^{2} \mathrm {sgn}\left (x e + d\right ) + 21 \, c^{2} d^{5} x^{2} e \mathrm {sgn}\left (x e + d\right ) + 7 \, c^{2} d^{6} x \mathrm {sgn}\left (x e + d\right )\right )} \sqrt {c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2),x, algorithm="giac")

[Out]

1/7*(c^2*x^7*e^6*sgn(x*e + d) + 7*c^2*d*x^6*e^5*sgn(x*e + d) + 21*c^2*d^2*x^5*e^4*sgn(x*e + d) + 35*c^2*d^3*x^
4*e^3*sgn(x*e + d) + 35*c^2*d^4*x^3*e^2*sgn(x*e + d) + 21*c^2*d^5*x^2*e*sgn(x*e + d) + 7*c^2*d^6*x*sgn(x*e + d
))*sqrt(c)

________________________________________________________________________________________

Mupad [B]
time = 0.65, size = 19, normalized size = 0.56 \begin {gather*} \frac {{\left (c\,{\left (d+e\,x\right )}^2\right )}^{7/2}}{7\,c\,e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(5/2),x)

[Out]

(c*(d + e*x)^2)^(7/2)/(7*c*e)

________________________________________________________________________________________